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We explore the implications of gravitationally lensed QSOs
and high-redshift SNe Ia observations for spatially flat cos-
mological models in which a classically evolving scalar field
currently dominates the energy density of the Universe. We
consider two representative scalar field potentials that give
rise to effective decaying Λ (“quintessence”) models: pseudo-
Nambu-Goldstone bosons (V (φ) = M4 (1 + cos (φ/f))) and
an inverse power-law potential (V (φ) = M4+αφ−α). We show
that a large region of parameter space is consistent with cur-
rent data if Ωm0 > 0.15. On the other hand, a higher lower
bound for the matter density parameter suggested by large-
scale galaxy flows, Ωm0 > 0.3, considerably reduces the al-
lowed parameter space, forcing the scalar field behavior to
approach that of a cosmological constant.

I. INTRODUCTION

Recent observations of type Ia supernovae (SNe Ia)
at high redshift suggest that the expansion of the Uni-
verse is accelerating [1,2]: these calibrated ‘standard’
candles appear fainter than would be expected if the ex-
pansion were slowing due to gravity. While concerns
about systematic errors (such as possible evolution of
the source population and grey dust) remain, the cur-
rent evidence indicates that the high-redshift supernovae
appear fainter because, at fixed redshift, they are at
larger distances. According to the Friedmann equation,
ä/a = −(4πG/3)(ρ + 3p), accelerated expansion requires
a dominant component with either negative energy den-
sity, which is physically inadmissible, or effective negative
pressure. Dark energy, dynamical-Λ (dynamical vacuum
energy), or quintessence are different names that have
been used to denote this component. A cosmological con-
stant, with pΛ = −ρΛ, is the simplest possibility.

Recent studies incorporating new CMB data [3,4] con-
firm previous analyses suggesting a large value for the
total density parameter, Ωtotal > 0.4, and favor a nearly
flat Universe (Ωtotal = 1). A different set of observa-
tions [5] now unambiguously point to low values for the
matter density parameter, Ωm0 = 0.3 ± 0.1. In combi-
nation, these two results provide independent evidence
for the conventional interpretation of the SNe Ia re-

sults and strongly support a spatially flat cosmology with
Ωm0 ∼ 0.3 and a dark energy component with ΩX ∼ 0.7.
These models are also theoretically appealing since a dark
energy component that is homogeneous on small scales
(20–30 h−1 Mpc) reconciles the spatial flatness predicted
by inflation with the sub-critical value of Ωm0 [6].

The cosmological constant has been introduced sev-
eral times in modern cosmology to reconcile theory with
observations [10] and subsequently discarded when im-
proved data or interpretation showed it was not needed.
However, it may be that the “genie” will now remain
forever out of the bottle [9]. Although current cosmo-
logical observations favor a cosmological constant, there
is as yet no explanation why its value is 50 to 120 or-
ders of magnitude below the naive estimates of quantum
field theory. One of the original motivations for introduc-
ing the idea of a dynamical Λ-term was to alleviate this
problem. There are also observational motivations for
considering dynamical-Λ as opposed to constant-Λ mod-
els. For instance, the COBE-normalized amplitude of the
mass power spectrum is in general lower in a dynamical-
Λ model than in a constant-Λ one, in accordance with
observations [14]. Further, since distances are smaller
(for fixed z and Ωm0), constraints from the statistics of
lensed QSOs are weaker in dynamical-Λ models [7,8,12].

II. SCALAR FIELD MODELS

A number of models with a dynamical Λ have been dis-
cussed in the literature [17,12,16,18–20]. We report here
new constraints from gravitational lensing statistics and
high-z SNe Ia on two representative scalar field potentials
that give rise to effective decaying Λ models: pseudo-
Nambu-Goldstone bosons (PNGB), with potential of the
form V (φ) = M4 (1 + cos (φ/f)), and inverse power-law
models, V (φ) = M4+αφ−α. These two models are chosen
to be representative of the range of dynamical behav-
ior of scalar field ‘quintessence’ models. In the PNGB
model, the scalar field at early times is frozen and there-
fore acts as a cosmological constant; at late times, the
field becomes dynamical, eventually oscillating about the
potential minimum, and the large-scale equation of state
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approaches that of non-relativistic matter (p = 0). The
power-law model, on the other hand, exhibits “tracker”
solutions [17,21]: at high redshift, the scalar field equa-
tion of state is close to that of non-relativistic matter,
and at late times it approaches that of the cosmological
constant.

Let us consider first the motivation for the PNGB
model. All “quintessence” models involve a scalar field
with ultra-low effective mass. In quantum field the-
ory, such ultra-low-mass scalars are not generically nat-
ural: radiative corrections generate large mass renormal-
izations at each order of perturbation theory. To in-
corporate ultra-light scalars into particle physics, their
small masses should be at least ‘technically’ natural, that
is, protected by symmetries, such that when the small
masses are set to zero, they cannot be generated in any
order of perturbation theory, owing to the restrictive
symmetry. Pseudo-Nambu-Goldstone bosons (PNGBs)
are the simplest way to have naturally ultra–low mass,
spin–0 particles. These models are characterized by two
mass scales, a spontaneous symmetry breaking scale f (at
which the effective Lagrangian still retains the symmetry)
and an explicit breaking scale M (at which the effec-
tive Lagrangian contains the explicit symmetry breaking
term). In order to act approximately like a cosmologi-
cal constant at recent epochs with Ωφ ∼ 1, the potential
energy density should be of order the critical density,
M4 ∼ 3H2

0m2
Pl/8π, or M ≃ 3 × 10−3h1/2 eV. As usual

we set V = 0 at the minimum of the potential by the
assumption that the fundamental vacuum energy of the
Universe is zero – for reasons not yet understood. Fur-
ther, since observations indicate an accelerated expan-
sion, at present the field kinetic energy must be relatively
small compared to its potential energy. This implies that
the motion of the field is still (nearly) overdamped, that

is,
√

|V ′′(φ0)| <
∼ 3H0 = 5 × 10−33h eV, i.e., that the

PNGB is ultra-light. The two conditions above imply
that f ∼ mPl ≃ 1019 GeV. Note that M ∼ 10−3 eV
is close to the neutrino mass scale for the MSW solu-
tion to the solar neutrino problem, and f ∼ mPl ≃ 1019

GeV, the Planck scale. Since these scales have a plau-
sible origin in particle physics models, we may have an
explanation for the ‘coincidence’ that the vacuum energy
is dynamically important at the present epoch [12,11,13].
Moreover, the small mass mφ ∼ M2/f is technically nat-
ural.

Next consider the inverse power-law model: this po-
tential gives rise to attractor (tracking) solutions. If
ρφ and ρB denote the mean scalar and dominant back-
ground (radiation or matter) densities, then if ρφ ≪ ρB,
the following ‘tracker’ relationship is satisfied: ρTR

φ ∼

a3(γB−γTR
φ )ρB, where γTR

φ = γB α/(2 + α) < γB

[17,21]. Here, a(t) is the cosmic scale factor, and γB =
(pB + ρB)/ρB denotes the adiabatic index of the back-
ground (γB = 4/3 during the radiation-dominated era
and γB = 1 during the matter-dominated epoch (MDE)).
If the scalar field is in the tracker solution, its energy den-

sity decreases more slowly than the background energy
density, and the field eventually begins to dominate the
dynamics of the expansion. If the field is on track dur-
ing the MDE, its effective adiabatic index is less than
unity—its effective pressure pφ = (φ̇2/2)− V (φ) is nega-
tive. This condition by itself does not guarantee acceler-
ated expansion: the field must have sufficiently negative
pressure and a sufficiently large energy density such that
the total effective adiabatic index (of the field plus the
matter) is less than 2/3. Moreoever, for inverse power-
law potentials, at late times Ωφ → 1, such that when
the growing Ωφ starts to become appreciable, γφ devi-
ates from the above tracking value, decreasing toward
the value γφ → 0. Thus, even if α > 4, such that initially
γφ = γTR

φ > 2/3 in the MDE, when the field begins
to dominate the energy density and γφ decreases, the
Universe will enter a phase of accelerated expansion. If
Ωm0 and α are sufficiently small, this will happen before
the present time. For inverse power-law potentials, the
two conditions Ωφ0 ∼ 1 and the preponderance of the
field potential energy over its kinetic energy (the condi-

tion for negative pressure) imply M ∼ 10
27α−12

α+4 eV and
φ0 ∼ mPl. Since φ0 ∼ mPl, quantum gravitational cor-
rections to the potential may be important and could
invalidate this picture [22].

In the very early Universe, in order to successfully
achieve tracking, the scalar field energy density must be
smaller than the radiation energy density. If, in addi-
tion, ρφ is smaller than the initial value of the tracking
energy density, the field will remain frozen until they have
comparable magnitude; at that point, the field starts to
follow the tracking solution. On the other hand, if ρφ

is larger than the initial value of the tracking energy
density, the field will enter a phase of kinetic energy
domination (γφ ∼ 2); this causes ρφ to decrease rapidly
(ρφ ∝ a−6), overshooting the tracker solution [21]. Sub-
sequently, as in the case above, the field is frozen and
later begins to follow the tracking solution when its en-
ergy density becomes comparable to the tracking energy
density. In either case, there is always a phase before
tracking during which the field is frozen. Consequently,
an important variable is the value of the field energy
density when it freezes. For instance, is it smaller or
larger than ρeq, the mean energy density at the epoch
of radiation-matter equality? Did the field have time to
completely achieve tracking or not? In fact, the exact
constraints imposed by cosmological tests on the param-
eter space of this model depend upon this condition.

In a previous study [15], we numerically evolved the
scalar field equations of motion forward from the epoch
of matter-radiation equality, assuming the field is initially
frozen, φ̇(teq) = 0. In this case, depending on the values
of α and Ωm0, it may happen that the field does not have
time to reach the tracking solution before the present. In
general, if Ωm0 is large, we observe that at the present
γφ is still growing away from its initial value γφ = 0. On
the other hand, if Ωm0 is sufficiently low, γφ will reach
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a maximum value (not necessarily the tracking value) at
some point in the past and at the present time will be
decreasing to the value γφ → 0. Here we follow a dif-
ferent approach. In our numerical computation we now
start the evolution of the scalar field during the radiation
dominated epoch and assume that it is on track early in
the evolution of the Universe.1 When ρφ becomes non-
negligible compared to the matter density, γφ starts to
decrease toward zero. Recently, constraints from high-
z SNe Ia on power-law potentials with the field rolling
with this set of initial conditions were obtained by Po-
dariu and Ratra [23]. We complement their analysis by
including the lensing constraints as well. In the next sec-
tion we show using the scalar field equations that present
data prefer low values of α. We also update and expand
the observational constraints on the PNGB models [15].

III. OBSERVATIONAL CONSTRAINTS

In the following we briefly outline our main assump-
tions for lensing and supernovae analysis. Our approach
for lensing statistics is based on Refs: [29,30] and is de-
scribed in more detail in [8]. To perform the statistical
analysis we consider data from the HST Snapshot survey
(498 highly luminous quasars (HLQ)), the Crampton sur-
vey (43 HLQ), the Yee survey (37 HLQ), the ESO/Liege
survey (61 HLQ), the HST GO observations (17 HLQ),
the CFA survey (102 HLQ) , and the NOT survey (104
HLQ) [24]. We consider a total of 862 (z > 1) highly
luminous optical quasars plus 5 lenses. The lens galaxies
are modeled as singular isothermal spheres (SIS), and we
consider lensing only by early-type galaxies, since they
are expected to dominate the lens population. We as-
sume a conserved comoving number density of lenses,
n = n0(1 + z)3, and a Schechter form for the early

type galaxy population, n0 =
∫ ∞
0

n∗
(

L
L∗

)α
exp

(

− L
L∗

)

dL
L∗

, with n∗ = 0.61× 10−2h3Mpc−3 and α = −1.0 [28]. We
assume that the luminosity satisfies the Faber-Jackson
relation [26], L/L∗ = (σ||/σ∗

||)
γ , with γ = 4. Since the

lensing optical depth depends upon the fourth power of
the velocity dispersion of an L∗ galaxy, a correct estimate
of this quantity is crucial for strong lensing calculations.
The image angular separation is also very sensitive to
σ∗
||: larger velocities give rise to larger image separations.

In our likelihood analysis we take into account the ob-
served image separation of the lensed quasars and adopt
the value σ∗

|| = 225 km/s, which gives the best fit to the

observed image separations [30].

1 In fact this is true only if α is not close to zero. The case
α = 0 is equivalent to a cosmological constant, and the field
remains frozen always.
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FIG. 1. Contours of constant likelihood (95.4% and 68.3%)
arising from lensing statistics (the region above and to the
right of the short dashed curves is excluded) and type Ia su-
pernovae (solid curves) are shown for the PNGB model. Also
shown are contours of constant Ωm0 and the limit for present
acceleration, q0 = 0. The shaded region shows the parameter
space allowed at 95% C.L. by the lensing, SNe, and cluster
observations.

For SIS, the total lensing optical depth can be
expressed analytically, τ(zS) = F

30 (dA(0, zS)(1 +

zS))3(cH−1
0 )−3, where zS is the source redshift,

dA(0, zS) is its angular diameter distance, and F =
16π3n(cH−1

0 )3(σ∗
||/c)4Γ(1 + α + 4/γ) ≃ 0.026 measures

the effectiveness of the lens in producing multiple im-
ages [25]. We correct the optical depth for the effects of
magnification bias and include the selection function due
to finite angular resolution and dynamic range [29,30,8].
We assume a mean optical extinction of ∆m =0.5 mag,
as suggested by Falco et al. [31]: this makes the lensing
statistics for optically selected quasars consistent with
the results for radio sources, for which there is no ex-
tinction. When applied to spatially flat cosmological
constant models, our approach yields the upper bounds
ΩΛ

<
∼ 0.76 (at 2σ) and ΩΛ

<
∼ 0.61 (at 1σ), with a best-

fit value of ΩΛ ≃ 0.39. Recent statistical analyses using
both HLQ and radio sources slightly tighten these con-
straints on a cosmological constant [31]. A combined
(optical+radio) lensing analysis for dynamical-Λ models
is still in progress; qualitatively, we expect this to tighten
the lensing constraints below by approximately 1σ.

For the SNe Ia analysis [15], we consider the latest
published data from the High-z Supernovae Search Team
[1] [32]. We use the 27 low-redshift and 10 high-redshift
SNe Ia (including SN97ck) reported in Riess et al. [1]
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and consider data with the MLCS [33,1] method applied
to the supernovae light curves. Following a procedure
similar to that described in Riess et al. [1], we determine
the cosmological parameters through a χ2 minimization,
neglecting the unphysical region Ωm0 < 0.
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FIG. 2. Contours of constant likelihood (95.4% and 68.3%)
arising from lensing statistics (the region below the thick
dashed curves is excluded) and type Ia supernovae (solid
curves) are shown for the inverse power-law model. Also
shown is the lower bound Ωm0 = 0.15 from clusters and
curves of constant present equation of state w0 = pφ0/ρφ0.
The shaded region shows the parameter space allowed at 95%
C.L. by the lensing, SNe, and cluster observations.

In Fig. 1 we show the 95.4% and 68.3% C. L. limits
from lensing (short dashed contours) and the SNe Ia data
(solid curves) on the parameters f and M of the PNGB
potential. As in [15], these limits apply to models with

the initial condition 4
√

πφ(ti)
mPl

= 1.5 and dφ
dt (ti) = 0, with

ti = 10−5t0 ; for other choices, the bounding contours
would shift by small amounts in the f − M plane. We
also plot some contours of constant Ωm0 (dashed) and
the curve q0 = 0 (long dashed contour) as a function of
the parameters f and M . The allowed region (shown by
the shaded area in Fig. 1) is limited by the lensing and
SNe Ia 95.4% C. L. contours and also by the constraint
Ωm0 > 0.15, which we interpret as 2σ lower bound from
observations of galaxy clusters. The data clearly favors
accelerated expansion (the region above the q0 = 0 curve)
but curiously there is a small region in the parameter
space, close to the point where the Ωm0 = 0.15 and the
Sne Ia 2σ curves cross, where the Universe is not in ac-
celerated expansion by the present time. This small area
disappears if we adopt the tighter constraint Ωm0 > 0.3.

We note that the bulk of the 2σ-allowed parameter space,
where the lensing and SNe contours are nearly vertical,
corresponds to the scalar field being nearly frozen, i.e., in
this region the model is degenerate with a cosmological
constant.

In Fig. 2 we show the 95.4% and 68.3% C. L. limits
from lensing (thick dashed contours) and the SNe Ia data
(solid curves) on the parameters α and Ωm0 of the inverse
power-law potential. The horizontal dotted line shows a
lower bound on the matter density inferred from the dy-
namics of galaxy clusters, Ωm0 = 0.15. We also show
contours of the present equation of state w0 = γ0 − 1
(thin dotted curves) and the curve q0 = 0 (long dashed
curve). At 95.4% confidence, the SNe Ia and Ωm0 con-
straints require α < 5 and w0 < −0.5; the latter bound
agrees roughly with the constraint obtained by assuming
a time-independent equation of state [8], an approxima-
tion sometimes used for the inverse power-law model. We
also observe that the lensing constraints on the model pa-
rameters are weak, constraining only low values of Ωm0

and α. We remark, however, that they are consistent
with the SNe Ia constraints. We can tighten the con-
straints on the equation of state if we consider a higher
value for the Ωm0 lower bound. For instance, if we adopt
Ωm0 > 0.3, as suggested in [34], we obtain w0 < −0.67
and α < 1.8. In both models, a larger lower bound on
Ωm0 pushes the scalar field behavior toward that of the
cosmological constant (w = −1).

IV. CONCLUSION

A consensus is beginning to emerge that we live in a
nearly flat, low-matter-density Universe with Ωm0 ∼ 0.3
and a dark energy, negative-pressure component with
ΩX ∼ 0.7. The nature of this dark energy component
is still not well understood; further developments will
require deeper understanding of fundamental physics as
well as improved observational tests to measure the equa-
tion of state at recent epochs, w(t), and determine if it
is distinguishable from that of the cosmological constant
[35]. Classical scalar field models provide a simple dy-
namical framework for posing these questions. In this
paper we analyzed two representative scalar field mod-
els, the PNGB and power-law potentials, which span
the range of expected dynamical behavior. The inverse
power-law model displays tracking solutions [21] which
allow the scalar field to start from a wide set of initial
conditions. We showed that current data favors a small
value of the parameter, α < 5. This may be a problem
for these models: in Refs: [21] it was shown that, start-
ing from the equipartition condition after inflation, it is
necessary to have α > 5 for the field to begin tracking
before matter-radiation equality. Since the observational
constraints indicate that tracking could only be achieved
(if at all) at more recent times, it is not clear what the-
oretical advantage, in terms of alleviating the ‘cosmic
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coincidence’ problem, is gained by the tracking solution.
Although well motivated from the particle physics view-
point, the PNGB model is strongly constrained by the
SNe Ia and lensing data. Finally, as noted above, these
two models predict radically different futures for the Uni-
verse. In the inverse power law model, the expansion
will continue accelerating and approach de Sitter space.
In the PNGB model, the present epoch of acceleration
may be brief, followed by a return to what is effectively
matter-dominated evolution.
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